新闻动态

首页»新闻动态» 行业资讯

近红外光谱

来源:中科英特官网:高光谱仪|火焰光谱|多光谱相机|火焰探测器 时间:2016/3/8 16:48:42 点击:89次
概念
 太阳光线大致可分为可见光及不可见光。可见光经三棱镜后会折射出紫、蓝、青、绿、黄、橙、红颜色的光线(光谱)。红光外侧的光线,在光谱中波长自0.75至1000微米的一段被称为红外光,又称红外线。红外线是一种光波,它的波长比无线电波短,比可见光长。肉眼看不到红外线,任何物体都发射着红外线。热物体的红外线辐射比冷物体强。
简述
   远红外线有较强的渗透力和辐射力,具有显著的温控效应和共振效应,它易被物体吸收并转化为物体的内能。 远红外线被人体吸收后,可使体内水分子产生共振,使水分子活化,增强其分子间的结合力,从而活化蛋白质等生物大分子,使生物体细胞处于最高振动能级。由于生物细胞产生共振效应,可将远红外热能传递到人体皮下较深的部分,以下深层温度上升,产生的温热由内向外散发。这种作用强度,使毛细血管扩张,促进血液循环,强化各组织之间的新陈代谢,增加组织的再生能力,提高机体的免疫能力,调节精神的异常兴奋状态,从而起到医疗保健的作用。
产生方法
产生远红外线主要方法选择热交换能力强、能放射特定波长远红外线的材料,然后加工制造成各种形式、各种用途的的产品。常用发生远红外线的材料和产品有如下种类:
生物炭
碳纤维制品
电气石
远红外陶瓷
远红外陶瓷制品
玉石
金属氧化物及碳化硅
划分
根据使用者的要求不同,红外线划分范围很不相同。
把能通过大气的三个波段划分为:
1.近红外波段 1~3微米
2.中红外波段 3~5微米
3.远红外波段 8~14微米
根据红外光谱划分为:
1.近红外波段 1~3微米
2.中红外波段 3~40微米
3.远红外波段 40~1000微米  
医学领域中常常如此划分:
1.近红外区 0.76~3微米
2.中红外区 3~30微米
3.远红外区 30~1000微米

光谱分析

分析方法
近红外光谱分析方法的优点为:
1) 分析速度快。近红外光谱分析仪一旦经过定标后在不到一分钟的时间内即可完成待测样品多个组分的同步测量,如果采用二极管列阵型检测器结合声光调制型分光器的分析仪,则可在几秒钟的时间内给出测量结果,完全可以实现过程在线定量分析
2) 对样品化学污染。待测样品视颗粒度的不同可能需要简单的物理制备过程(如磨碎、混合、干燥等),无需任何化学干预即可完成测量过程,被称为是一种绿色的分析技术。
3) 仪器操作简单,对操作员的素质水平要求较低。通过软件设计可以实现极为简单的操作要求,在整个测量过程中引入的人为误差较小。
4) 测量准确度高。尽管该技术与传统理化分析方法相比精度略逊一筹,但是给出的测量准确度足够满足生产过程中质量监控的实际要求,故而非常实用。
5) 分析成本低。由于在整个测量过程中无需任何化学试剂,仪器定标完成后测量是一项非常简单工作,所以几乎没有任何损耗。

分析仪器

近红外光谱仪器从分光系统可分为固定波长滤光片、光栅色散、快速傅立叶变换、声光可调滤光器四种类型。
滤光片型主要作专用分析仪器,如粮食水分测定仪。由于滤光片数量有限,很难分析复杂体系的样品。
光栅扫描式具有较高的信噪比和分辨率。由于仪器中的可动部件(如光栅轴)在连续高强度的运行中可能存在磨损问题,从而影响光谱采集的可靠性,不太适合于在线分析。
傅立叶变换近红外光谱仪是具有较高的分辨率和扫描速度,这类仪器的弱点同样是干涉仪中存在移动性部件,且需要较严格的工作环境。
声光可调滤光器是采用双折射晶体,通过改变射频频率来调节扫描的波长,整个仪器系统无移动部件,扫描速度快。但这类仪器的分辨率相对较低,价格也较高。
随着阵列检测器件生产技术的日趋成熟,采用固定光路、光栅分光、阵列检测器构成的NIR仪器,以其性能稳定、扫描速度快、分辨率高、信噪比高以及性能价格比好等特点正越来越引起人们的重视。在与固定光路相匹配的阵列检测器中,常用的有电荷耦合器件(CCD)和二极管阵列(PDA)两种类型,其中CCD多用于近红外短波区域的光谱仪,PDA检测器则用于长波近红外区域。

定性分析

在近红外光谱图谱上,依据不同种类物质所含化学成分的不同,含氢基团倍频与合频振动频率不同,则近红外图谱的峰位、峰数及峰强是不同的,样品的化学成分差异越大,图谱的特征性差异越强。采用简易的峰位鉴别可对不同品种的中药进行鉴别采用峰位鉴别法主要是分析组分相差较大的不同种物质,这种方法直观、简便,但对于性质相近的样品鉴别却无能为力。因此必须需要其它的方法,如化学计量学方法等来鉴别。
模式识别在六十年代末被引入到化学领域,它基于一个十分直观的基本假设,即“物以类聚”,认为性质相近的样本在模式空间中所处的位置相近,它们在空间形成“簇”。模式识别方法具有明显的优点,它不需要数学模型需要的先验知识很少擅长处理复杂事物和多元数据等。在实际工作中,经常遇到只需要知道样品的类别或等级,并不需要知道样品中含有的组分数与其含量的问题,这时需要应用模式识别法。模式识别法主要用于光谱的定性分析。在近红外光谱定性分析中常用的模式识别方法很多,有聚类分析判别分析主成分分析人工神经网络方法。
在中草药及其产品的应用中,模式识别方法主要用于产品的分类与鉴定。系统聚类分析是依据一种事先选定的相似性或非相似性如距离来度量类在分类空间中的距离,再根据谱系图决定分类结果。逐步聚类分析动态聚类法是依据距离进行分类的一种迭代方法。与系统聚类法相比,它的计算速度快,并节省储存单元,但需事先指定分类数和适当初定值,每步迭代都对各类的中心凝聚点进行调整并按分类对象与中心的距离之远近进行归类,直到不变为止。
主成分分析是一种简化数据结构、突出主要矛盾的多变量统计分类方法。利用主成分分析可以降低数据的维数,根据主因子得分对样品进行分类。逐步判别分析能在筛选变量的基础上建立线性判别模型。筛选是通过检验逐步进行的。每一步选取满足指定水平最显著的变量,并剔除因新变量的引入而变得不显著的原引入变量,直到不能引入也不能剔除变量为止。
人工神经网络作为一种智能型算法,具有很强的非线性映照能力,在非线性多元校正中已显露出一定的优势,关于误差反向传播神经网络的研究和应用较多。由于具有良好的自组织、自学习和处理复杂非线性问题的能力,因而对于复杂的、非线性的体系,可取得更好的效果,已被用于许多领域。

定量分析

近红外光谱分析技术在近几十年内得到了快速的发展而且在多个应用领域得到了广泛的认可,它的魅力在于其可以在很短的时间内无需复杂的样品制备过程即可完成物质成份多组分的同步快速定量分析,并且可以给出很高的分析精度,不产生任何化学污染且分析成本很低,易于在实验室尤其是工业现场或在线分析领域得到推广使用。
NIR 定量分析的过程
该技术应用实施过程中需要前期进行一些必要的准备工作,其中包括:
(1) 具有广泛代表性的定标和预测样品集的收集和成份理化定量分析
(2) 定标和预测样品集的近红外光谱采集和光谱解析;
(3) 物质各待测成份在近红外分析仪器上的定标建模和模型优化;
(4) 已有定标模型的实际预测分析。
在以上的前期工作中需要进行较多的实验验证,而且需要对近红外光谱定量分析技术中的每一个环节上全方面考虑多种干扰因素(如温度、湿度等)的影响。一旦定标模型通过预测检验分析后,近红外光谱分析仪器将在较长的时间内保持很高的稳定性和分析精度,操作人员很容易在较短的时间内掌握该仪器的操作程序,这就是该技术在一个新的应用领域很容易得到推广的主要优势所在。但是近红外分析仪器定标模型精确度会由于环境因素影响、自身器件的老化以及参考标准样品的变化而发生微小的变化,为了确保分析结果的准确性需要对模型进行周期性的检验和修正,这就需要用户长期拥有检测样品的理化分析能力,尽管并不需要太多的工作量,所以近红外光谱定量分析技术需要其他成份定量分析技术为依托,经常通过少量经过理化分析的新样品来验证近红外定标模型的精确度,这也是该技术的弱点所在。

应用范围

1.用于生物反应过程出的研究与检测。由于近红外响应速度快,又可进行多组分的同时和无损检测,因此可以获取生物过程中的一些重要变量参数;同时它还可以用于生化反应中微生物的鉴别和分类;在生命过程的研究中,被用于测定脑血流量和脑血管中CO2的活性,人体肌肉组织在运动中的氧化代谢等。
2.生物体组织的研究则主要包括皮肤中水分的测定,脑组织的研究等方面
3.在临床医学方面,近红外光谱的最大优势在于其对组织的透过性好,能够进行体外或在体的非破坏、非介入分析。主要有全血或血清中血红蛋白载氧量、PH、葡萄糖、尿素等含量的测定。
随着近红外、计算机技术、光学技术等的不断发展,研究的不断深入,近红外技术将在生物医学领域中充分发挥出潜力,有望在探索生命过程的奥秘,以及重大疾病预防、诊断、处理上起到更多的实际作用。

医学应用

近红外光谱技术在许多领域(农业食品等)检测中已作为官方认证的检测技术,同时在纺织聚合物药物石油化工生化环保等领域也得到了广泛的应用名。除了早期的应用外,近几年人们又利用该技术检测物质的纯度,解释物质的结构,预测、评价生物的某些生理现象及变化,监测一些天体的变化等。尤其近几年,近红外光谱技术在医学领域的许多方面得到了广泛的应用。
1. 近红外光谱分析在中药分析中的应用
近红外光谱技术应用于药物的鉴别和定性、定量的分析不仅具有快速、方便、准确、非侵入式分析、易于实现生产过程的在线控制等优点,而且可以鉴定某些药物如光学异构体、具有光学活性物质的纯度,因此在药物的定性鉴定、定量分析质量控制在线检测等方面显示了巨大的作用。利用近红外光谱和多变量统计分类技术系统聚类分析、逐步聚类分析、主成分分析和逐步判别等可很好地对药材和成药进行定性判别和分类。
2. 近红外光谱分析在临床分析中的应用
随着光导纤维传感技术的发展,近红外光谱检测技术和计算机网络技术相结合的进一步深入,近红外光谱技术的非侵入式定性和定量分析成为可能。同时,由于生物体中不同的透明组织对近红外光具有不同的吸收和散射特性,因此近红外光对不同的软组织和变化的组织具有较强的区分能力。根据这种特性,可以利用近红外光谱法测量组织的某些光学参数从而得到组织的某些生理参数,或者建立某些生理参数和光谱数据的关系,从而可以检测出组织中的异物或生成二维的图像;也可监测皮肤组织受外界环境影响的变化;还可用于临床分析和血液某种成分的测定。近红外光谱法可以直接对活体组织进行无创伤检测,使过去无法开展的研究工作成为可能,极大地提高了分析检测效率。